The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems.

نویسندگان

  • Judith Nardmann
  • Jiabing Ji
  • Wolfgang Werr
  • Michael J Scanlon
چکیده

The narrow sheath (ns) phenotype of maize is a duplicate factor trait conferred by mutations at the unlinked loci ns1 and ns2. Recessive mutations at each locus together confer the phenotypic deletion of a lateral compartment in maize leaves and leaf homologs. Previous analyses revealed that the mediolateral axis of maize leaves is comprised of at least two distinct compartments, and suggest a model whereby NS function is required to recruit leaf founder cells from a lateral compartment of maize meristems. Genomic clones of two maize homeodomain-encoding genes were isolated by homology to the WUSCHEL-related gene PRESSED FLOWER (PRS). PRS is required for lateral sepal development in Arabidopsis, although no leaf phenotype is reported. Co-segregation of the ns phenotype with multiple mutant alleles of two maize PRS homologs confirms their allelism to ns1 and ns2. Analyses of NS protein accumulation verify that the ns-R mutations are null alleles. ns transcripts are detected in two lateral foci within maize meristems, and in the margins of lateral organ primordia. Whereas ns1 and ns2 transcripts accumulate to equivalent levels in shoot meristems of vegetative seedlings, ns2 transcripts predominate in female inflorescences. Previously undiscovered phenotypes in the pressed flower mutant support a model whereby the morphology of eudicot leaves and monocot grass leaves has evolved via the differential elaboration of upper versus lower leaf zones. A model implicating an evolutionarily conserved NS/PRS function during recruitment of organ founder cells from a lateral domain of plant meristems is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially probl...

متن کامل

The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.

The narrow sheath mutant of maize displays a leaf and plant stature phenotype controlled by the duplicate factor mutations narrow sheath1 and narrow sheath2. Mutant leaves fail to develop a lateral domain that includes the leaf margins. Genetic data are presented to show that the narrow sheath mutations map to duplicated chromosomal regions, reflecting an ancestral duplication of the maize geno...

متن کامل

The tonoplast--where sweetness is dispensable.

is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. The ...

متن کامل

NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development.

The narrow sheath duplicate genes (ns1 and ns2) perform redundant functions during maize leaf development. Plants homozygous for mutations in both ns genes fail to develop wild-type leaf tissue in a lateral domain that includes the leaf margin. Previous studies indicated that the NS gene product(s) functions during recruitment of leaf founder-cells in a lateral, meristematic domain that contrib...

متن کامل

A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.

YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 12  شماره 

صفحات  -

تاریخ انتشار 2004